

Start Small, Stay Small

A Developer’s Guide to Launching a

Startup

Written by Rob Walling

Edited by Mike Taber

Copyright © 2010 Rob Walling

www.startupbook.net

ISBN 978-0-615-37396-6

First Edition

All rights reserved. No part of this book may be reproduced in any

form or by any electronic or mechanical means, including information

storage and retrieval systems, without permission in writing from Rob

Walling, except by a reviewer who may quote a brief passage in a

review.

Trademarked names appear in this book. Rather than use a

trademark symbol with every occurrence of a name, we use the

names solely in an editorial fashion and to the benefit of the

trademark owner, with no intention of infringement.

http://www.startupbook.net/

For my Mom and Dad, who years ago taught

me the value of hard work.

Contents

01 | The Chasm Between Developer and Entrepreneur

39 | Why Niches are the Name of the Game

91 | Your Product

113 | Building a Killer Sales Website

145 | Startup Marketing

165 | Virtual Assistants and Outsourcing

181 | Grow it or Start Over

201 | Postlude

1

Preface

Who is this Book For?
This book is aimed at developers who want to launch their

startup with no outside funding. It’s for companies started by

real developers solving real pain points using desktop, web and

mobile applications.

This book intentionally avoids topics restricted to venture-

backed startups such as: honing your investor pitch, securing

funding, and figuring out how to use the piles of cash investors

keep placing in your lap.

In this book I assume:

 You don’t have $6M of investor funds sitting in your

bank account

 You’re unable to relocate to the handful of startup hubs

in the world

 You’re unwilling to work 70 hour weeks for low pay with

the hope of someday making millions from stock options

There’s nothing wrong with pursuing venture funding and

attempting to grow fast like eBay, Google, Twitter, and

Facebook. It just so happened that most people are not in a

position to pursue this option.

2

What Does This Book Cover?

The focus of this book is building and launching a successful

software, web or mobile startup with no external funding.

This process includes:

 Developing the proper mindset for a self-funded startup

 Understanding the Market-First Approach

 Finding and testing a niche market

 Choosing the optimal platform, price and revenue model

 Building a killer sales website

 Understanding the primary purpose of your sales

website

 Building the right kind of interest, and thus driving the

right kind of traffic, to your website

 Learning how to outsource

 Working with virtual assistants

 Determining what to do after launch: do you grow the

business or start over?

If you’re reading this book I assume you are an experienced

software developer, so we won’t be covering the development

process. If you need assistance building software there are

books written with that purpose in mind.

As I began the writing process, I received input from developers

who told me they were tired of “filler” material – weak case

studies, superficial interviews, chapters describing 10 options

for how to accomplish a task but no guidance on which path to

take or how to decide between them.

So I’ve focused on providing a practical, step-by-step approach

to getting your startup off the ground and focused on making

every word count. No filler allowed.

If you aren’t frantically underlining, highlighting or taking

notes as you read each chapter, I have not achieved my goal for

this book.

3

To ask a question, make a comment or purchase the print,

ebook or audio version of this book, visit www.StartupBook.net

About the Author

One question that should be on your mind as you start reading

any book is: why should I listen to this author? Here is my

track record so far.

My day job is managing 10 profitable software products and

websites that I’ve built or acquired over the past ten years. I

blog about startups, online marketing, and software and web

entrepreneurship at www.SoftwareByRob.com.

And with my colleague Mike Taber, I run an online startup

community with several hundred members called the

Micropreneur Academy.

About the Micropreneur Academy

The Micropreneur Academy is a paid online learning

environment and community website for startup founders.

Although this book contains a small amount of material from

the Micropreneur Academy, it only covers topics that are

conducive to the printed page.

The purpose of the Micropreneur Academy is to present topics

that require interactive elements (screencasts, audio, and

worksheets), topics that change frequently, cutting-edge

approaches and our complete Rolodex of vendors and

contractors. In addition it provides a community of like-minded

startup founders accessible via private forums.

If you are interested in launching or growing your startup faster,

as an owner of this book you are entitled to the first month of the

Academy at no charge. To receive your free month visit

www.Micropreneur.com/book/

And with that…let’s get started.

http://www.startupbook.net/
http://www.softwarebyrob.com/
http://www.micropreneur.com/book/

4

Chapter 1

The Chasm Between Developer and

Entrepreneur

What is an Entrepreneur?

An entrepreneur is a visionary.

He is the person who sees the potential in an idea and creates

a viable business from nothing.

She is the person who invests hundreds of hours into building,

launching and marketing a product, fighting through every

roadblock along the way.

In this book we’ll cover the approaches of two types of

entrepreneurs:

 Micropreneurs – Entrepreneurs who want to remain

solo. This means no employees under any circumstance.

Micropreneurs might own a single product, or may own

many products that collectively contribute to their

bottom line. A specific lifestyle is the goal of a

Micropreneur.

5

 Bootstrappers – A bootstrapper has their vision set on

something larger than a single person venture. Perhaps

5 employees, perhaps 10…a bootstrapper has an idea

and knows she must execute and grow her company to

survive.

It so happens that 90% of the knowledge needed to succeed at

Micropreneurship and bootstrapping is identical. Finding a

niche, finding a product, building, launching, marketing…it’s

the same process.

In this book I will point out a handful of places where the two

paths diverge and call out the recommended approach based

on the path you’re following.

Why the Anti-Venture Capital Stance?

I wanted to address this early so you’re clear on the focus of

this book.

I am not anti-venture capital. I am anti-everyone-thinking-

venture-capital-is-the-only-way-to-start-a-tech-company.

Seeking funding of any kind creates two problems.

First, it involves a massive investment of time and focus, which

distracts you from the important things, like making money

and staying in business.

Second, it makes modest success nearly impossible due to the

limits it places on the potential markets you can pursue.

If you’re self-funded with one or two founders, you can support

your entire business from a tiny niche that provides

$10k/month in revenue.

But with venture capital (or even a few hundred thousand in

angel funding) you are forced to go after much larger markets.

And a market that's 10x the size is 100x harder to get right.

There’s more competition, more complexity, higher advertising

6

rates, more SEO competition, and a more fragmented

audience.

Targeting a large, non-niche market is expensive in terms of

marketing and support. It will eat you alive if you tackle it from

the start.

But if you start small and make a product so good that your

niche is falling all over itself to sign up, word will spread and

you will soon find yourself with a product that extends beyond

your tiny niche.

However, this takes time to grow organically; an approach that

outside funding does not allow.

A Look at the Self-Funded Startup Entrepreneur

There are many definitions of entrepreneur, but since we’ll be

discussing self-funded tech startups we are going to focus our

definition on a few key points:

Point 1: An entrepreneur is a technical visionary who

creates software for a niche market.

Niche markets are critical. If you want to self-fund a startup

you have to choose a niche.

Building an online invoicing software as a service (SaaS)

application? Good luck.

Building an online invoicing application targeted at landscape

architects? Now you’re talking.

The genius of niches is they are too small for large competitors,

allowing a nimble entrepreneur the breathing room to focus on

an underserved audience. Once you’ve succeeded in that

niche, you can leverage your success to establish credibility for

your business to move into larger markets.

Point 2: An entrepreneur merges existing technical

knowledge with online marketing knowledge.

7

The key factor in an entrepreneur’s success is their ability to

market their product. I can almost hear you groaning…but

keep an open mind. Millions of people in this world can build

software. A fractional subset of those can build software and

convince people to buy it.

A developer who knows how to market a product is a rare (and

powerful) combination.

Point 3: An entrepreneur is a cross between a developer, a

webmaster, and a marketer.

Developer

Software entrepreneurship would be nearly impossible without

the technical skills we learn as developers. The ability to fix a

production site that’s crashing or put together a hot fix for a

key customer will be critical to your success.

Webmaster

These days it’s imperative that your startup knows how to sell

online. This means creating a website that converts visitors

into customers. We’ll be exploring a number of ways to build

high-converting sales websites, and doing these will require

basic HTML knowledge.

Once your website is up, you will be making constant updates,

adding new content to achieve better search engine rankings,

tweaking conversions (newsletter sign-ups, trials, purchases,

etc…) and most of these tasks will be better executed if you can

make small changes yourself. Basic knowledge of HTML or a

CMS is essential.

Marketer

Marketing is more important than your product.

8

Product Last. Marketing First.

Let me say it another way:

Your product has to be good. If it’s not, you’ll be out of

business.

But before you build a good product you have to find your

market. With an enormous amount of anecdotes to back me up

I strongly believe that building something no one wants is the

most common source of failure for entrepreneurs.

In chapter 2 we’ll look at how to make sure people want what

you’re building before you build it.

Self-funded vs. Venture-funded

Self-funding your startup is worlds apart from what most

people talk about in the tech startup world.

Venture-backed startups typically raise capital from outside

investors with the goal of massive, accelerated growth. They

attack large, growing markets with the hopes of 100x growth in

5 years or less.

Examples abound, but think along the lines of Netscape,

Google, Travelocity, Yelp, Twitter and Facebook. Big dollars.

Fast growth. High risk.

If you’re a venture-backed startup founder you’re looking at

many years of long hours with a small potential for a huge

payoff.

A bootstrapper still seeks growth, but at a slower pace since

they do it organically through the re-investment of profit. They

9

focus on smaller markets or niches within larger markets and

grow both profit and headcount organically.

Examples include Joel Spolsky’s Fog Creek Software and Eric

Sink’s SourceGear. Keywords: slower growth, less risk.

If you’re a self-funded startup founder, you’re looking at a

decent potential for a decent payoff.

A Micropreneur has goals that are not limited to financial gain

and more often involve lifestyle goals. Being able to live where

you want and work when you want is an appealing option for

many founders.

Two Real-life Examples

A Micropreneur: Ruben Gamez

Ruben Gamez is a Micropreneur. He has a full-time job as a

development manager, but launched his SaaS application

Bidsketch1 in 2009. Today, he makes a tidy monthly income

from this application. Ruben has no plans to leave his job, but

enjoys the extra income, the control he can exert over his own

project, and the experience of learning how to build, launch

and market his own application.

The lessons Ruben has learned over the past year of launching

and growing Bidsketch will apply to his future efforts, and he

plans to launch other products during the coming year. His

long-term goal is serial Micropreneurship and eventually, self-

employment.

A Bootstrapper: Harry Hollander

Harry started Moraware Software2 with a business partner.

Their goal was to provide scheduling software for countertop

installers, and within six months they knew it was a viable

1 www.bidsketch.com

2 www.moraware.com

http://www.bidsketch.com/
http://www.moraware.com/

10

business. Eight years later Moraware employs four people in

addition to the two founders, all of whom work virtually from

their respective homes.

Moraware focuses on the construction vertical niche and more

specifically, countertop contractors. Limiting themselves to this

group of people has a lot to do with their success. They’ve been

able to focus on filling the exact needs of their customers and

as a result they own a large portion of the countertop

scheduling software market.

Starting for the Right Reasons

Most developers want to build software products for the wrong

reasons.

Reason #1: Having a Product Idea

If you have an idea for a product, odds are high that you have

project/product confusion.

A project is a software application that you build as a fun side

project. The code is fun to write because you’re not concerned

about quality and performance, and the end result is a neat

little application that likely isn’t of use to many people.

A product is a project that people will pay money for. In other

words, it’s a project that has a market (a group of people who

want to buy it). Without a market, a software application is

just a project.

Most developers who come up with an idea know exactly how

they will build it, but no idea how they will reach potential

customers. They think a link from TechCrunch will drive

hundreds, if not thousands, of sales.

On rare occasions the product-first approach works, but for

the most part it’s a recipe for failure.

Reason #2: To Get Rich

Getting rich shouldn't be your goal when launching a product.

11

Thousands of people with significantly more coding and

marketing skills have built and launched products, yet still

work for a living. If you are doing it for the money you will not

stick around during those long months of hard work when no

money is coming in.

If you want to make a million dollars, buy a lottery ticket or

start a venture-backed startup; the odds of succeeding at

either are very much not in your favor, but the potential

payout is big.

As I said earlier, I’m pretty sure you’re here to do something

with less risk and less reward, but a much higher chance for

success. A million dollar payday is most likely not in your

future, but owning a successful startup can be.

Reason #3: Because It Sounds Like Fun

We’ve all read the stories of a successful startup and dreamed

that we would one day be that person in the Fast Company

article. Whether it’s someone who hits it big with a fluke

Facebook application or works for years to build a successful

software company that you’ve followed through their blog, the

story is always romanticized. In other words, the few glimpses

you have into the life of a startup are not a true indication of

what goes on behind the scenes to make it work.

If you want to become a Micropreneur because it sounds like

fun, you’re going to have a rude awakening on the 10th day

when the initial excitement has worn off and you’re slogging

through exception handling code at one in the morning.

To throw more fuel on the fire, what you know about software

development is a small piece of the puzzle. Writing code, where

most of us are well-versed, is only about 30% of the work

needed to launch a successful product.

The other 70% is debugging, optimizing, creating an installer,

writing documentation, building a sales website, opening a

merchant account, advertising, promoting, processing sales,

12

providing support, and a hundred other things we’ll dive into

in later modules. Some of it is great fun…other parts, not so

much.

Suffice to say that being an entrepreneur can be fun, but the

fun parts come only with hundreds of hours of hard work.

What are the Right Reasons?

The “right” reason to start a startup depends on your goals. As

I mentioned before, Micropreneurs lean towards lifestyle

choices (freedom, income independence, location

independence), while bootstrappers might embrace the

challenge and excitement of owning their own business, to

build equity in something they own, and to have control over

the projects they work on.

Paying the Price of Success

Software entrepreneurship is a fantastic experience. The first

time someone pays you for software you wrote, your head will

nearly spin off its axis.

And ultimately, if you’re able to harness the power of

leveraging software instead of time, you can achieve more

freedom than you’re ready for. The first time I took a one

month vacation I had the nagging feeling that I needed to do

160 hours of work when I got home…then I realized that hours

and dollars no longer correlated.

It’s hard to re-train your mind out of the dollars-for-hours

mentality. For me it took well over a year.

The price to achieve this kind of payoff involves a huge up-

front investment of time.

Or it may involve a substantial financial investment acquiring

products.

13

Or maybe you’ll decide to step away from the code, give up that

control we all feel we need, and hire out some development so

you focus on other areas of the business.

The price you pay is negotiable and is truly guided by your

personal goals. But the bottom line is: you will have to pay a

price.

It’s a long road to becoming a successful entrepreneur. There

will be many long nights, especially in the beginning. It’s

critical to know what you want out of entrepreneurship so you

can make the right decisions along the way, and to give you

something to hold onto when you’re burning the midnight oil

for the fifteenth night in a row.

What Are Your Goals?

Knowing your goals will allow you to make the right decisions

as you start (or continue on) your path through

entrepreneurship.

People start startups for a plethora of reasons, both personal

and professional. Hard decisions lie ahead and the answers

depend on what you want to get out of your startup experience.

As an example, which of the following sounds most appealing?

1. Keeping your day job and earning extra money on the

side.

2. Building a portfolio of products and quitting your day

job while still writing code.

3. Quitting your day job with the intent of outsourcing the

code and focusing on the entrepreneurial side.

4. Quitting your day job and running a small company

where you work from home and may have a few

employees.

There are other options, of course, but your answer to the

above depends on your personal preferences, desires and time

constraints. Luckily you don’t have to decide everything now.

14

But it’s good to begin thinking about your motivation for

starting a startup because it dictates the type of product you

should launch.

The Power of Goals

To nail down what you want out of entrepreneurship, you need

to decide on your goals. This is a process most people skip due

to skepticism about the benefits of the process.

A study at Dominican University3 revealed that the following 3

factors substantially increased someone’s chance of following

through on their goals:

1. Written Goals – “Those who wrote their goals

accomplished significantly more than those who did not

write their goals.”

2. Public Commitment - “…those who sent their

commitments to a friend accomplished significantly

more than those who wrote action commitments or did

not write their goals.”

3. Accountability – “…those who sent weekly progress

reports to their friend accomplished significantly more

than those who had unwritten goals…”

It may feel like you’re an exception; that you don’t need goals

or accountability…but trust the science and give it a shot.

Spend 20 minutes making a list of the things you are hoping to

accomplish by starting up. If you believe what was said above,

it will make a big difference. Worst case, you waste 20 minutes

of your time.

Remember that there is no single best path to success as a

startup founder. Since you are deciding on a specific lifestyle

and are making sacrifices to get there, it can look like almost

anything. Just be sure it’s what you want.

3 Summary of Recent Goals Research, by Gail Matthews, Ph.D.,

Dominican University

15

Strive to build a startup that generates $500 per

month in profit.

The second two items, public commitment and accountability,

can be achieved by interacting with a community of like-

minded startup founders. You can find this through local

Meetup groups4, or through an online community like the

Micropreneur Academy5.

In the Academy, we have an accountability room where

founders post weekly updates on their progress and discuss

roadblocks that are impacting their progress because we know

that it does help people to achieve their goals.

One Short-Term Goal I Propose

Here’s one question you should think about right now: what is

a good short-term goal for your startup?

I have a suggestion to help get you started:

This may sound like an easy goal, but will require more work

than you can fathom at this point.

Once you’ve done that you will have so much experience under

your belt you won’t believe how much you know (and how little

you knew when you started).

The Dip (a.k.a. The Software Product Myth)

The reason you need goals and accountability is to stay

motivated during the hard times. Without goals you are much

more likely to throw in the towel when things get difficult. This

might be when you launch and no one buys, or you are

4 www.meetup.com

5 www.micropreneur.com

http://www.meetup.com/
http://www.micropreneur.com/

16

bombarded with so many support requests you don’t have

enough time to build new features.

Most developers start as salaried employees, slogging through

code and loving it because they never imagined a job could be

challenging, educational, and downright fun. Where else can

you learn new things every day, play around with computers,

and get paid for it?

A certain percentage of developers become unhappy with

salaried development over time (typically it’s shortly after

they’re asked to manage people, or maintain legacy code), and

they dream of breaking out of the cube walls and running their

own show. Some choose consulting, but many inevitably decide

to build a software product.

“After all,” they think “you code it once and sell it a thousand

times – it’s like printing your own money! I build apps all the

time, how hard could it be to launch a product?”

Against All Odds

Most often the developer who chooses to become a consultant

(whether as a freelancer or working for a company), does okay.

She doesn’t have a ton of risk and gets paid for the hours she

works.

But developers who make the leap to their own startup are

another story. Building a product involves a large up-front time

investment, and as a result is far riskier than becoming a

consultant because you have to wait months to find out if your

effort will generate revenue. In addition, growing a product to

the point of providing substantial income is a long, arduous

road.

But let’s say, for the sake of argument, that you spend 6

months of your spare time and you now own a web-based car

key locator that sells 100 copies per month at $25 a pop. At

long last, after months of working nights and weekends,

spending every waking moment poring over your code,

17

marketing, selling, and burning the midnight oil, you’re living

the dream of owning your own startup.

Except for one thing.

Support is Brutal

In our scenario you’re now making $2500/month from your

product, but since you make $60k as a salaried developer,

you’re not going to move back in with your parents so you can

quit your day job.

So you work 8-10 hours during the day writing code for

someone else, and come home each night to a slow but steady

stream of support emails. The worst part is that if you’ve built

your software right the majority of the issues will not be

problems with your product, but degraded OS installations,

crazy configurations, a customer who doesn’t know how to

double-click, etc…

The next step is to figure out, between the 5-10 hours per week

you’re spending on support, and the 40-50 hours per week you

spend at work, how you’re going to find time to add new

features. The kicker is the support burden actually worsens

with time because your customer base grows. After 1 month

you have 100 customers with potential problems, after a year,

1,200.

And yes, the person you decided to sell to even though they

complained about the high price ($25) is still hanging around,

emailing you weekly wondering when the next release is

coming.

But you persevere, and manage to slog your way through the

incoming support requests and get started on new features.

What you find is that ongoing development, as with any legacy

system, is much slower than green field development. You’re

now tied to legacy code and design decisions. You soon realize

this isn’t what you signed up for when you had that brilliant

18

flash of insight that people need web-based software that helps

them when locating their keys.

It’s about this time that support emails start going

unanswered, releases stop, and the product withers on the

vine. It may wind up for sale on Flippa (www.flippa.com), or it

may be relegated to the bone yard of failed software products.

The Upside

The flip side is what you’ve already heard on the blogs of

successful product developers.

Once a product hits critical mass, you’ve conquered the

hardest part of the equation. After that, the exponential

leverage of software products kicks in and you can live it up on

your empire of web-based unlocking-device locator

applications. It’s a recurring revenue stream that can grow far

beyond what you would make as a consultant, all the while

creating balance sheet value (meaning one day, you can sell it

for stacks of proverbial cash and retire).

This is unlike your consultant buddy, whose consulting firm is

worth 44 cents once she decides to retire because she had an

unused stamp on her desk.

But there is a dip before you get to this place of exponential

leverage and proverbial cash. A big dip. And if you can get

through it once, it’s more likely that you’ll be able to get

through it with your next product. And the one after that.

The key factor in getting you through the dip is your goals.

These are the goals you wrote down six months prior due to

the advice given to you in a random book about startups.

Once you make it to the other side, you’ve learned what it

takes to launch and maintain a product. The next time you

launch a product, you will have a monumentally better chance

of success because you are now a more savvy software

entrepreneur.

http://www.flippa.com/

19

Why People Make the Switch from Developer to

Entrepreneur

As a developer, your income, your ability to control what

projects you work on, and your ability to control what you

learn, end at a certain point.

For the first several years you’re constantly learning, working

on (seemingly) fun projects and your income grows quickly if

you apply yourself.

But the experiences of many veteran developers show that after

a certain level of experience you can't push past that financial

barrier. And keeping up with the latest and greatest technology

– something that used to excite you – will begin to wear you

down.

It’s hard to break out of that position and most often it

requires a big risk. In my experience this risk involves joining

an existing startup or starting one of your own.

I’ve tried both. I did it more for the excitement and freedom

than for the income. In fact, I took a pay cut when I moved

from consulting to owning my own products. But my passion

for building something I own and the opportunity to experience

true time and location independence far outweighed the drop

in income.

Lack of Learning

Part of your “topping out” will likely be a lack of learning. While

it's true there are always new technologies to learn, as you

mature in your technology career it’s likely you will begin to

feel like a hamster on a wheel as you learn one more way to

pull data out of a database. The idea of spending the time to

learn how to do it using the latest method begins to make you

tired.

It starts to feel as if you are constantly moving from one

technology to the next which involves little “real” learning and

20

a lot of learning some new syntax or API…things that will

change in six month anyway. You start to feel like learning new

techniques for the rest of your life will basically rehash the

same things you learned in your first two years as a

programmer.

Ownership

I like to use the analogy of renting vs. buying a home. When

you rent you have less commitment, you can move often, and

renting is typically less expensive than buying. But you don't

own anything and you don't build equity. When you move out

you're not any better off than when you moved in.

Such it is with salaried employment and consulting. When the

day is done you own nothing. Not only does this translate into

a lack of financial gain, it's a mental challenge as well. Many

find it hard to build application after application and never feel

passionate about the application they’re building.

Once you launch a product, you are instantly building equity.

With every copy you sell and every improvement you make, you

are building something that will not only generate income in

the future, but actually has value on the open market. Instead

of having nothing at the end of your lease, you wind up getting

back all of your rent money and more in equity.

The Biggest Roadblocks to Your Success

There are many roadblocks between the day you decide on a

product idea and the day you launch. Your day job, family

commitments, or the allure of the TiVo have a tendency to chip

away at your grand ideas and leave you feeling overwhelmed,

unproductive and unmotivated.

After 6 months of building your product with little more to

show than a few thousand lines of plumbing code, it’s easy to

lose focus and shut the whole thing down.

21

The biggest roadblocks I’ve experienced first-hand or

discovered through conversations with entrepreneurs are

discussed below, along with strategies for how to avoid them.

Roadblock #1: No Market

This is by far the most common mistake I’ve seen – building

something no one wants. We’ll discuss the importance of

having a market in more detail in chapter 2.

It’s a common belief that building a good product is enough to

succeed. It’s not.

If you are the typical developer, you will not have enough

money, power or fame to generate demand for a product people

don’t need or don’t know they need.

How to Avoid It

Avoid this roadblock by building a product after you’ve verified

there is a market.

In chapter 2 we’ll look at the right questions to ask about a

potential market, how to answer to those questions using

research, and how to test the validity of your market for a

minimal investment before you write your first line of code.

Roadblock #2: Fear

The first time you try something it’s scary.

As humans we fear the unknown. We fear

failure…rejection…mistakes. These are either feelings that

come naturally or have been pressed into us by society.

This fear is what makes starting a company hard. It entails a

large amount of risk with so much potential for failure,

rejection and mistakes.

How to Avoid It

22

The up-front fear is a big indicator that you’re going

to grow as a person if you proceed through it. And,

frankly, the terror wears off pretty quickly.

While there’s no way to avoid the fear of starting your

company, the following can help put the fear in perspective:

It’s true. Surprisingly, anything is much easier the second

time. And the third. And by the fourth time you can’t even feel

the hair on the back of your neck, or the sweat in your palms

because it’s no longer there. The terror goes away surprisingly

quickly.

The interesting thing is that the more you taste this growth,

the more you want it. It’s a rush, and it’s addictive.

It’s a huge confidence boost to look back at the things that

scared you last month, last year, or even five years ago. And

realize you conquered them.

This kind of success leads you to trust your instincts. It builds

confidence. It eliminates pointless analysis that used to keep

you spinning on decisions for hours, days or weeks.

Overcoming the terror of firsts is hard, but it’s what makes the

goal beyond it worth achieving. The terror that stands between

you and the goal is something 99.9% of people will never

overcome.

Roadblock #3: Lack of Goals

Having no clear, written goals for your startup means you

won’t know whether to pursue the white label deal someone

offers you two weeks after launch, or to start selling in

overseas markets because someone asks you to.

Without goals for both yourself and your startup you are flying

blind without guidance in situations where there is no right or

23

wrong answer. Answers need to stem from your long-term

desires for your startup and yourself.

 Want to grow as large as possible? Make that your goal

and take advantage of every opportunity that comes

your way. Realize this will mean hiring employees, and

working longer hours.

 Want to spend more time with your family and quit your

9 to 5? Make that your goal and realize you will have to

turn down many opportunities that come your way.

Your goals must serve as your roadmap that takes you to your

definition of a successful startup.

How to Avoid It

You’ve already heard this a few times, but define your goals

and write them down.

Roadblock #4: Inconsistency

The main problem with inconsistency is that it makes you lose

momentum and momentum is critical to staying productive.

Forget the TV and video games. How many times have you

found yourself thinking you were being productive only to look

back and realize you spent 3 hours searching for and

evaluating something you may not need until 6 months down

the road?

Spending an evening finding 50 blogs to market to is a great

way to feel productive, but do you really need 50, or could you

get by with 10? Shouldn’t you have outsourced this task for a

pittance to any respectable virtual assistant (VA)? In reality,

the 4 hours you spent researching should have been 10

minutes spent writing up this task.

The hard part is that it sure feels productive to spend 4 hours

doing research and it’s fun, to boot. Unfortunately, it doesn’t

get you closer to launching.

24

Another common distraction masquerading as productivity is

reading business books. It sure seems like Why We Buy6, Made

to Stick7 and Outliers8 are going to help you launch a

successful product. But reading books gets you no closer to

launching than watching Lost.

If reading business books is a hobby, fantastic. But it won’t get

you one hour closer to launch.

How to Avoid It

You’ve likely heard of the concept of an information diet.

The idea is that most of the information we consume is a waste

of time. Newspapers, magazines, blogs, podcasts, the

news…are all enjoyable to consume, but they have a tendency

to offer a constant distraction from real productivity.

You can’t consume and produce at the same time – when

you’re in high-producing mode you have to temporarily step

away from your magazines, blogs, and other forms of

distraction for a while. Being in the pattern of checking your

RSS reader every time you sit down at your computer kills

hours of productivity each week. Those are hours that could be

spent building your product.

It’s not easy, but scaling back your information consumption

will have a huge impact on your productivity.

Start by checking your RSS reader once a day and limit

yourself to 30 minutes.

Limit your news reading and TV watching to X minutes

(whatever you’re comfortable with).

6 http://tinyurl.com/23bxxtb

7 http://tinyurl.com/2b8v2x2

8 http://tinyurl.com/23w2oz7

http://tinyurl.com/23bxxtb
http://tinyurl.com/2b8v2x2
http://tinyurl.com/23w2oz7

25

Anytime you’re on your computer ask yourself “Is this activity

getting me closer to my launch date?”

Roadblock #5: Believing You Have to Do Everything

Yourself

I’m in the process of buying a house. The house we made an

offer on last week has 45 images I would like to share with

family and friends, but they are hidden behind a questionable

JavaScript interface. Using my advanced knowledge of web

hackery (i.e. View Source), I grabbed the list of each image URL

and put them in a text file. The following ten seconds made a

huge difference in how I spent the next 20 minutes of my day.

I copied the first URL into my clipboard and began to paste it

into my address bar when I (for the hundredth time) realized

that this is exactly the kind of task that appears to produce

something, but is completely rote and repetitive. It would be

simple (and fun) to write a Perl script to do the fetching, but

that would take around the same amount of time.

So I sent the task to my virtual assistant (VA). It took me

exactly 90 seconds to get the request to him and within 24

hours, I had a zip file of the images. It took 20 billable minutes

and at $6/hour the 24-hour wait was well worth it.

This morning I realized I needed an image for one of my

websites and a change to the CSS. I’m not a great designer but

I could have designed something in about two hours. I could

have also made the CSS change and tested it in a few browsers

in about an hour.

Instead, I opted to send these simple tasks to someone else at

the cost of $15/hour. I wrote up an email and the task will be

done in the next day or two.

 Time spent: 10 minutes

 Time saved: 2 hours, 50 minutes

26

How Much Can You Really Gain?

These are trivial examples of what I call drip outsourcing;

outsourcing small tasks as I perform my daily work. Drip

outsourcing has become invaluable to my productivity.

If you total up the three instances above it only amounts to 6-7

hours. But you can do this constantly, every day. Before I start

any task I ask myself: “Could one of my contractors possibly do

this?”

Over the course of a month you can easily save 20-40 hours

without much effort. These days I save 60-100 hours a month.

The roadblock that so many entrepreneurs encounter as they

try to launch is thinking they, or one of their co-founders, has to

perform every task necessary to get their product out the door.

Just for kicks I’m going to spit out a list of tasks needed to

take a web-based product from idea to your first week after

launch. Here we go:

 Niche Brainstorming & Mental Evaluation

 Niche Evaluation

 Niche Selection

 Product Selection

 Product Architecture

 Functional Design

 Database Design

 Graphic Design*

 HTML/CSS*

 UI Development (AJAX/JS)*

 Business Tier Development*

 Database Development*

 Creating Unit Tests*

 Creating UI Tests*

 Manual Testing*

 Fixing Post-Launch Bugs*

27

 User Documentation

 Installation Documentation

 Sales Website Site Map Creation

 Sales Website Copywriting*

 Sales Website Graphic Design*

 Sales Website HTML/CSS*

 Sales Website Programming*

 Sales Website Payment Integration*

 Product Delivery (via email, link on site, etc…)*

 Setting Up Email List

 Setting Up Domain Name & Web Hosting

 Setting Up Email Accounts & 800 Number

 Setting Up Analytics

 Pre-Launch Search Engine Optimization

 Pre-Launch Pay-Per-Click Set-up

 Initial Social Media /Viral Marketing*

 Pre-Launch Video Marketing

 Pre-Launch Partnerships

 Launch Press Release*

 Pre-Launch Email Marketing

 Pre-Launch Blogging or Podcasting

 And probably a few others…

There is a list of 37 tasks ranging in duration from 2 hours to a

few hundred.

You’ll notice many of them have asterisks next to them. These

are the tasks that will be easiest to outsource – the tasks that

require a technical or common skill that’s not specific to your

product.

Outsource your product architecture? Only for small

applications.

Outsource your graphic design and HTML/CSS? Every time…

28

How to Avoid It

The bottom line is to start small, gain comfort with a

contractor, and gradually increase the amount you outsource.

Outsourcing is a learned skill, and you’re likely to screw it up

your first time around. Start with non-critical tasks and be

very specific in how they should be executed. At first it will

seem like you could do the tasks faster than the time it takes

to assign them, but as you get to know the person you’re

outsourcing to it will quickly begin to save you time. If it

doesn’t, then you need to look for a new resource.

Hiring a Virtual Assistant (VA) is a great way to get started with

almost no financial commitment and a low hourly rate (around

$6/hour overseas, $10-20/hour in the U.S.). We’ll discuss VAs

more in chapter 6.

Graphic design and HTML/CSS are also great ways to dive in.

Graphic design is nice because it’s not complicated and what

you see is what you get. It’s either good or it’s not. Design is

much easier to outsource than programming.

Finding decent designers is a little more challenging than

finding a VA – Elance9 is a good route, but asking around is

even better.

Take a risk this month: outsource your first task and see

where it takes you. When was the last time a single tool or

work habit offered the opportunity to save 20-60 hours?

Changing Your Time Mindset

It’s a big leap moving from employee to entrepreneur. One of

the biggest adjustments is accepting that time is your most

precious commodity.

9 www.elance.com

http://www.elance.com/

29

Dollarizing

The phrase “dollarize” is used in sales to describe the approach

of showing your prospect how your price is less expensive than

your competition due to the amount of money they will save in

the long run.

For example, you can dollarize a screw10 by showing how your

deliveries are always on-time, your defect rate is half that of

your competitors and your screws can withstand an additional

500 lbs. of stress, each resulting in time saved in material

handling and warranty calls.

If you take it a step further and you possess the appropriate

data, you can approximate how much money your screws will

save your prospect in a given year based on the number of

times your competitors deliver late and how many defects the

customer will avoid by using your screws.

It’s a powerful technique and a way to turn an otherwise

commodity purchase into a bottom-line savings.

Dollarizing Your Time

In the same vein, dollarizing your time is the idea of putting a

theoretical dollar amount on each hour you work. If you value

your time at $100/hour it makes certain decisions, such as

outsourcing work to a $6/hour virtual assistant, a no-brainer.

Putting a value on your time is a foundational step in

becoming an entrepreneur, and it’s one many entrepreneurs

never take. Skipping this step can result in late nights

performing menial tasks you should be outsourcing, and an

effective hourly rate slightly above minimum wage.

It never seems like a good idea to pay someone out of your own

pocket for something you can do yourself…until you realize the

economics of doing so.

10 Editor’s Note: They do this extensively in Nevada.

30

Approaches to Dollarizing Your Time

There are two approaches to dollarizing your time. Choose the

one that makes the most sense for your situation.

Approach #1: Freelance Rates

If you are a freelance developer or consultant, you probably

have an hourly rate. This is a good place to start. If you bill

clients $60/hour, then an hour of your time is worth $60.

If you don’t perform freelance work, do a search on Craigslist

or Guru11 for freelancers in your local area with similar skills.

As a developer with a few years of experience you’ll likely see

rates in the $40 and up range. Frankly, if you have no other

information, $50/hour is a good number to start with.

Approach #2: Salary

If you don’t perform freelance work or have difficulty finding

comparative freelancers online, another approach is to divide

your current salary + benefits by 2,000 (the approximate

number of hours worked in a year), rounded up to the nearest

$5 increment.

It varies widely, but a typical benefits package including 401k

matching, disability insurance, health care, and time off can

range from 20-45% of your salary. You can come close to

determining the real dollar amount using your pay stub and a

bit of math, but if you just want to take a swing at it use 30%.

So if your salary is $60,000 per year, 30% of that is an

additional $18,000 making your effective salary $78,000.

$78,000 divided by 2,000 gives you an hourly rate of

approximately $39/hour, or $40/hour when rounded up to the

nearest $5 increment.

Be aware that freelance rates are nearly always higher than

salaried rates because freelancers spend a portion of their time

11 www.guru.com

http://www.guru.com/

31

on non-billable tasks such as invoicing, marketing, sales, etc…

They have to increase their billable rate to make up for these

non-billable hours.

Ultimately it’s up to you, but I would tend towards using the

higher freelance rate for your time, especially since it’s closer to

what you would receive on the open market if you chose to

pursue freelance work.

Keep in Mind: Desired Earnings

Realizing your time is worth $50/hour is the first step; the

next step is actually generating $50 for every hour you work,

and the third step is figuring out how to make your time worth

$75 or $100/hour. If you continue to think your time is worth

$50/hour it will to stay at $50/hour.

$100/hour is a good long-term goal to shoot for. If you’ve done

your research on one-person software companies (which are

similar in economics to small software startups), the reality for

most tends to be closer to $25/hour12.

If you are making $25/hour as an entrepreneur you are doing

something wrong. Improve your marketing, grow your sales,

find a new niche, outsource and automate. $25/hour is not an

acceptable dollarized rate for a startup.

While you won’t be earning anywhere near $50/hour when you

begin building your product, once you launch you should aim

to hit that number within 6 months. In the early stages, your

dollarized rate is a mental state but you want to make it a

reality as soon as possible. Once you’ve succeeded, then you

can work towards increasing it.

Realizations

Several realizations stem from dollarizing your time.

12 http://blog.businessofsoftware.org/2007/09/start-a-softwar.html

http://blog.businessofsoftware.org/2007/09/start-a-softwar.html

32

At this very moment am I making progress

towards crossing off a to-do, -or- am I relaxing

and re-energizing?

Work hard and play hard, but never do both at

once.

Realization #1: Outsourcing is a Bargain

Once you’ve established you’re worth $50/hour, paying

someone $6/hour to handle administrative tasks or $15/hour

to write code seems like a trip to the dollar store.

Outsourcing aspects of your business is the single most

powerful approach I’ve seen to increasing your true hourly rate

as an entrepreneur. If I didn’t outsource my administrative

tasks, my effective hourly rate would plummet.

Realization #2: Keep Work and Play Separate

Wasting time is bad. Boring movies, bad TV, and pointless web

surfing are expensive propositions. If you aren’t enjoying

something, stop doing it.

I need to re-iterate here: I’m not saying you should never relax,

have fun, watch movies, play with your kids, watch TV, or surf

the web. I’m saying that you should be deliberate about your

work and your free time to get the maximum benefit from both.

In other words:

Numerous times throughout the day ask yourself:

If I’m doing neither, evaluate the situation and change it.

If you aren’t enjoying a movie, walk out.

33

If you’re playing with your kids and working on your iPhone

you’re not really working or playing – you’re doing both poorly.

Put the iPhone away and focus on your kids; it will shock you

how much more fun you have and how, after making this

choice, you’ll feel energized and ready to dive back into work.

The same goes for multi-tasking work in front of the TV. Your

productivity level is around 50% when trying to do both. Most

evenings you’ll feel as if you worked the whole night but didn’t

get anything done.

Realization #3: Wasting Time is Bad

If your time is worth, say $75/hour, standing in line at the

bank is painful. Sitting in traffic is another money waster –

every non-productive, non-leisure minute you spend is another

$1.25 down the drain.

Since it’s not practical to assume you will never wait in line

again, the best counter-attack is to have a notebook and pen

handy at all times. Use this time for high-level thinking,

something you may have a hard time doing in front of a

computer.

It’s amazing that we think we can remember our important

thoughts. Due to the amount of information and chaos you

consume each day, a thought stays in your head for a few

seconds before it disappears. Perhaps you will think of it again,

perhaps not. Writing down important ideas is critical to

building a list of ways to improve your business.

With a notebook in hand, you’ll find yourself having amazing

insights while in line at the post office.

For years I’ve carried a notebook everywhere I go for this exact

purpose. I use it to capture keyword ideas, product ideas,

niche ideas, to-do’s, and any other valuable information that

surfaces.

34

When reading blogs or books or listening to podcasts

or audio books, take action notes.

Again, I’m not saying you should be working all the time – if

you want to bring a magazine to read in line, by all means do

it. If your mind needs to rest when you’re running errands then

use this as a time to re-energize so you can hit your work

harder when you return to it.

The real statement here is that you should never find yourself

killing time.

Realization #4: Information Consumption is Only Good

When it Produces Something

The following discussion excludes consumption for pleasure,

such as: reading a novel, watching The Daily Show, catching a

movie, etc.

Consuming and synthesizing are very different things; it’s easy

to consume in mass quantity. It’s much more difficult to

synthesize information.

Have you ever read through an entire magazine only to realize

you can’t remember any specifics about what you just read?

As someone who likely enjoys consuming in large quantities, at

some point you will realize that you are wasting an enormous

amount of time. I highly recommend putting the following into

place:

Action notes are short- or long-term to-do items that apply

directly to my businesses.

35

For example, I listen to several SEO podcasts. If they mention

an interesting website, I make a note to check it out the next

time I’m able.

As they mention a new SEO technique I create a specific to-do

to try that approach on one of my websites. I make the action

note specific so I can act on it quickly the next time I have a

few spare minutes. If I were to write something general like

“Google Webmaster Tools,” it doesn’t help me. But if I write

“Create Google Webmaster Tools Account for DotNetInvoice,” I

can act on this quickly and cross it off my list without having

to do much real thinking.

Action notes allow you to quickly determine which resources

provide real value and which are fluff.

Since implementing action notes, I’ve canceled two magazine

subscriptions, removed 40+ blogs from my RSS reader, and

have become choosy about the audio books I buy.

This approach provides you with real-time feedback on the

value of any consumable. A $4.99 audio book is actually a cost

if it chews up 6 hours of your time and provides no actionable

items.

Transitioning from Developer to Entrepreneur

You’ve likely realized that entrepreneurship and software

development are two very different things. Software

development is a subset of the skills an entrepreneur needs to

launch and operate a successful startup.

If you’ve been writing code for years you’ve formed opinions

and viewpoints that don’t quite hold true in this new world.

This lesson covers 9 realizations that will come to you at some

point during your transition from developer to entrepreneur.

There’s a lot of information here so don’t feel as if you have to

fully grasp everything today. If a few of them sink in and the

36

rest prepare you for what’s to come, you will be in a better

position to succeed.

Realization #1: Being a Good Technician is Not Enough

In The E-Myth Revisited13, author Michael Gerber talks about

the archetypes of running a business. They are: entrepreneur,

manager and technician.

 The entrepreneur is the dreamer, the visionary, and the

creative mind.

 The manager is the person who thinks about return on

investment (ROI), near-term success, and productivity.

 The technician gets the work done. She follows the

manager’s guidance and is concerned about today’s

success.

95% of us are comfortable, and probably excel at, being

technicians. This means you’re good at writing code, producing

something tangible, and cranking away on each task, moving

one step closer to launch date.

But it takes more than a technician to run a successful

business. It’s critical to look ahead into the near-term and

determine which features or marketing efforts will provide the

best ROI (manager), and to think out a year or more to

determine the long-term direction of your business

(entrepreneur).

The first step is to determine your goals and objectives as we’ve

been discussing in this chapter.

Without planning, organizing, systematizing, outsourcing, and

marketing, all things you will shy away from as a technician,

you will never make it past the $25/hour pit that many

startups fall into.

13 http://tinyurl.com/2bzsda6

http://tinyurl.com/2bzsda6

37

Realization #2: Market Comes First, Marketing Second,

Aesthetic Third, and Functionality a Distant Fourth

The product with a sizeable market and low competition wins

even with bad marketing, a bad aesthetic, and poor

functionality. Think QuickBooks in the early days, or any niche

product you’ve ever seen that looked like it was written by a six

year old but sold thousands of copies.

In the same market, the product with better marketing wins.

Every time.

In the same market with equal marketing, the product with the

better design aesthetic wins. Sure, a few people will dig deep

enough to find that the “ugly” product has better or more

functionality, but the product that wins is the one that has the

best looking website and user interface.

Functionality, code quality, and documentation are all a

distant fourth. I know that this sounds sacrilegious to a

software developer, but unless you’re marketing to software

developers, your order of importance is market, marketing,

aesthetic, function.

Realization #3: Things Will Never Be As Clear As You Want

Them to Be

Writing code is cut and dry. There are different ways to

accomplish the same thing, but in general you know how you

want your application to behave and you just need to get it

there. Your constraints are constant – the compiler behaves

the same way it did the last time you compiled.

By comparison entrepreneurship, especially the marketing

side, is never this clear. As we’ll discuss in chapter 2,

marketing is about math and human behavior. The math part

is straight-forward. It’s the human behavior that’s going to

throw you for a loop.

Even the foremost marketing experts in the world are not sure

whether people will buy a new product. People with 20, 30 and

38

40 years of experience still have to take their best guess at

what will succeed. They have to try things out and adjust as

they go. They often do small roll-outs to test audiences and

adjust the product or the message before unleashing it on the

world.

You will have to do the same and it will involve a lot of

guesswork at the start. That’s a hard pill to swallow when

you’re used to making decisions based on fact. Instead, you

have to take your best guess; then measure and tweak.

And then do it 20 more times until you succeed.

Realization #4: You Can’t Specify Everything…But You Do

Need a Plan

As developers, most of us have experience with the waterfall

method of building software – write a detailed spec and build it

as specified. With waterfall development changes are painful

and time consuming.

You may be using an agile methodology these days, which is

more in line with entrepreneurship than the waterfall

approach. Define a long-term goal (launch your product), look

at the next set of tasks that will get you one step closer to that

goal, work, and re-evaluate in a week.

Before launch you may be able to get by using the waterfall

method, but post-launch it will be a disaster. This goes for

your development, support, and marketing efforts. As an

entrepreneur, your #1 advantage is reaction time, and the

waterfall approach reacts too slowly.

You can’t specify everything, but you do need a plan to get you

to your next release.

Realization #5: You Need to Fail Fast and Recover

If you haven’t already, you will soon need to accept you are

going to fail a lot. You will make bad decisions, waste time,

waste money, run ineffective ads, miss deadlines, and release

39

buggy code. Each time this happens, you have to accept that

you failed and move on.

The faster you fail and learn from your mistakes, the faster you

will improve. Pretty soon your ads won’t lose money, you’ll get

better at estimating level of effort, and you’ll be sure to

thoroughly test the complex parts of your code.

But you have to wade through that sea of failures before you

can reach the other side. And this can be a hard thing to do.

Realization #6: You Will Never Be Done

Finishing a software product is a great feeling. The night you

roll the new bits to the production server is indescribable. The

feelings of relief, joy, and accomplishment are some of the most

rewarding parts of developing software.

And you’re never going to feel that way with your product.

Sure, you’ll have releases and milestones. And you’ll feel good

the day you launch a new version.

But you will never feel “done.” You will always have a list of

features, marketing tests, potential partnerships, and new

markets to take care of. And while the journey is itself a gift,

never having the feeling of completion is something you need to

get used to.

The idea of building an application and sitting back to collect a

check is, unfortunately, a pipe dream. You have to continually

invest in both your product and your marketing in order to

remain successful.

Realization #7: Don’t Expect Instant Gratification

The first month you launch you will be lucky to break $100 in

revenue.

A product, marketing effort, and a reputation take time to

build. But once they build they snowball such that the effort to

40

launch a new version of your product is miniscule by

comparison, and your chances of success are much higher.

Once you have 5 releases under your belt, 1500 targeted

visitors every month, a 500 prospect mailing list, and

hundreds of incoming links…surprise! Things are easier. Much

easier.

The effort of getting a new product off the ground is

exponentially more than launching a new product once you

have resources and experience behind you.

Don’t expect that your work is over the day after you launch.

That’s the day work really begins.

Realization #8: Process is King

Documenting repeatable processes for anything you will do

more than once is essential to your sanity.

It’s true; you can fly by the seat of your pants and get by, but it

makes you a hostage to your work.

If you’ve ever been a manager you probably like process and

understand its benefits. If you’re a developer you probably

dislike process or see it as a necessary evil.

Startups, being lean and mean, seem like the perfect place to

eliminate documents, have no systems, and no processes…but

that’s far from the truth.

Without process it’s impossible to delegate, difficult to bring on

a business partner, and easy to make mistakes. With

processes in place it’s much easier to sell your product if/when

you want to make an exit.

The fact is, creating processes will bring you freedom through

the ability to easily automate and outsource tasks. We’ll

discuss this in chapter 6.

41

Realization #9: Nothing about a Startup is a One-Time

Effort

Many of us have the dream of launching our startup, investing

time in the marketing effort, and from that day forward being

able to focus on writing code. The problem is, nearly everything

about a startup requires ongoing effort.

You have to invest time every month into marketing,

development, support, SEO, AdWords, and every other aspect

of your business. The dream of building an app that never

breaks, never needs new features and possesses auto-pilot

marketing are possible, but they will not come by accident.

To get to the point of an automated startup you have to choose

your niche and your product wisely, and invest a large amount

of time outsourcing and automating your business. Even then,

support and feature development is the easiest part to

outsource; marketing is one of the most difficult.

Conclusion

Realizing the differences between development and

entrepreneurship is something that will benefit you in the long

run as you pursue your dream of starting a company.

Understanding and embracing the entrepreneurial mindset will

go a long way toward preparing you for the chaos that is a

startup.

42

This concludes this

sample of Start Small,

Stay Small. If you are

interested in reading the

remaining six chapters I

encourage you to visit

www.StartupBook.net to

purchase a copy of the

book in PDF or

paperback.

http://www.startupbook.net/

